
Binary Token Memory: A 
Scalable Compression 
Framework for Efficient LLM 
Inference

Author: Cem Bağdatlı

License: CC-BY 4.0

Test Environment: Intel i5-6500, 32GB DDR3, Debian 12, Python 3.11

Abstract

Repetitive tokenization of conversational history imposes significant 
bottlenecks on large language model (LLM) inference, affecting both client-
side and server-side deployments.

In our original Visual Token Memory (VTM) design, token sequences were 
encoded into 16-bit PNG images, enabling tokenization-free recall with 
lightweight storage. While effective for prototyping and educational use, this
approach introduced compression and decoding inefficiencies unsuitable for 
high-performance production systems.

In this extended work, we present a transition from visual formats to Zstd-
framed binary token memory containers, directly storing uint16 or 
uint32 token ID arrays.

This restructured system improves compression ratios, enables direct mmap
access, simplifies GPU tensor formation, and optionally supports 
authenticated encryption for secure and regulated applications.

We validate the new framework with comprehensive benchmarks on client-
class hardware (i5 CPU, no additional GPU) and discuss its applicability to 
large-scale server-side inference as well. Results demonstrate significant 
preprocessing speedups and storage footprint reductions compared to 
traditional tokenization pipelines.

The resulting architecture paves the way for explainable, persistent, privacy-
respecting AI memory modules, applicable across edge devices, data 
centers, medical AI, and educational systems.



Introduction

Large Language Models (LLMs) have revolutionized natural language 
processing by enabling sophisticated conversational agents, summarizers, 
and autonomous assistants. However, scaling LLM deployment across both 
client-side and server-side environments has surfaced fundamental 
inefficiencies—particularly around tokenization and context 
management.
In dialog-based systems, each new user interaction must be processed in the
context of a growing conversation history. Traditionally, this requires re-
tokenizing the entire history with every inference, even though most tokens
remain unchanged across steps.
While key-value caching (KV-cache) mechanisms optimize the computation 
inside the model itself, tokenization remains an under-optimized 
bottleneck, consuming CPU cycles, memory bandwidth, and introducing 
latency spikes in interactive applications.

To address this gap, our original work introduced Visual Token Memory 
(VTM): a lightweight framework where token ID sequences were encoded 
into 16-bit grayscale PNG images. This approach allowed token histories to 
be stored and retrieved without requiring re-tokenization, significantly 
accelerating inference for small and medium-sized contexts.
Moreover, the visual nature of PNG encoding offered unique advantages for 
pedagogical visualization, debugging, and early-stage prototyping.

However, as applications scaled towards:

• Production-grade inference pipelines,
• Persistent AI memory modules,
• Privacy-respecting edge and cloud deployments,

the limitations of visual formats became clear:

• Sub-optimal compression ratios compared to modern binary codecs,

• Decode latency tied to image-specific libraries,

• Limited flexibility in data security and direct tensor loading.

While the original VTM v1 format based on 16-bit PNG images demonstrated
proof of concept feasibility, it introduced decoding overhead, limited 
compression flexibility, and lack of direct GPU mapping support.
VTM v2, leveraging Zstandard compression over raw token arrays, resolves 



these limitations and achieves significantly better storage efficiency and 
decompression latency.

In this extended work, we introduce a next-generation approach:
Token Memory Containers based on Zstd-framed binary storage.

By directly storing token ID sequences as compressed uint16 or uint32 
arrays, we achieve:

• Higher compression efficiency,

• Zero-copy memory mapping,

• Optional authenticated encryption for secure applications,

• Broader compatibility with high-throughput inference systems.

We validate the upgraded framework through comprehensive benchmarks 
on client-class hardware (i5 CPU, no GPU acceleration) and discuss its 
implications for both client-side and server-side LLM deployments.

The evolution from visual token memory to binary memory containers 
represents a necessary step towards building sustainable, scalable, and 
explainable AI memory infrastructure for future LLM ecosystems.

A typical conversation history serialized in JSON can easily exceed 1.2 MB, 
while the equivalent token memory compressed with VTM v2 reduces to less
than 400 KB
This work specifically addresses persistent memory as a critical enabler for 
sustainable and scalable AI systems.

Related Work

Optimization efforts in the LLM ecosystem have largely focused on 
reducing model computation, rather than preprocessing overhead.
Key innovations include:

• KV-Cache techniques, which store intermediate key and value 
matrices during attention operations to avoid recomputation during 
inference.

• Model quantization and pruning, aimed at shrinking parameter 
sizes and speeding up matrix multiplications.

However, the preprocessing pipeline—particularly tokenization—
remains a significant contributor to end-to-end inference latency.
Even with fast tokenizers (e.g., Hugging Face TokenizerFast, FlashInfer 



GPU tokenizers), re-tokenizing full conversational histories consumes non-
trivial CPU cycles and memory bandwidth.

Some approaches to reduce this burden include:

• Prompt caches in systems like Llama.cpp, which store previously 
tokenized prompts as raw uint32 arrays along with cached KV-states.

• Memory-mapped token datasets in Megatron-LM and vLLM, where
pre-tokenized corpora are serialized into binary blobs for efficient 
loading during training and inference.

• GPU tokenizers (e.g., FlashInfer) that shift tokenization computation 
onto the GPU, reducing CPU bottlenecks but still requiring per-
request processing unless token caches are implemented.

These solutions demonstrate that binary storage of token IDs can 
dramatically reduce latency and resource usage.
However, they primarily address internal pipeline efficiencies for training
or single-session inference.

Our original Visual Token Memory (VTM) differed by emphasizing:

• Persistence of historical context across sessions,

• Visual interpretability through human-readable artifacts,

• Potential for secure, compressed, and encrypted memory 
modules.

In this extended work, we align with industrial best practices by 
transitioning to binary Zstd-framed token memory containers, while 
preserving VTM’s original vision of sustainable, modular, and 
explainable AI memory.

Methodology

3.1. Visual Token Memory v1 (PNG-Based)

In our original implementation, Visual Token Memory (VTM) introduced a
lightweight, visual approach to compressing LLM token histories:

1. Tokenization: Textual conversation history was tokenized once, 
producing a sequence of token IDs.

2. Visual Encoding: Token IDs were packed into 16-bit grayscale PNG 
images, preserving numeric fidelity.



3. Storage: Encoded PNGs were saved as lightweight, human-
inspectable artifacts.

4. Inference Preparation:

• The latest user input was freshly tokenized.

• Historical token IDs were retrieved by decoding the 
corresponding PNG.

• Retrieved tokens and new tokens were concatenated into the 
input tensor.

Advantages:

• Bypassed repeated tokenization for historical context.

• Provided an intuitive visual debugging and educational tool.

• Required minimal changes to existing inference pipelines.

Limitations:

• PNG compression, while convenient, was sub-optimal compared to 
dedicated binary compressors.

• libpng decoding introduced unnecessary CPU overhead for high-
throughput systems.

• No native support for authenticated encryption or complex memory 
mapping optimizations.

Thus, while VTM v1 validated the concept of token memory, it also revealed 
the need for a more efficient, production-ready design.

3.2. Binary Token Memory Containers v2 (Zstd-Framed 
Binary Storage)

Building on the insights from VTM v1, VTM v2 transitions to a binary 
container format optimized for efficiency, flexibility, and security.

The new storage pipeline operates as follows:

Encoding Pipeline:



Figure 1: Visual overview of the VTM v2 encoding pipeline. Input text is 
tokenized, serialized into a raw token ID array, compressed using Zstandard,
and finally stored in a structured .tokencache container.

1. Input: Textual conversation history.
2. Tokenization: One-time tokenization using a deterministic tokenizer 

(e.g., DeepSeek, Llama2, etc.), producing a list of token IDs.

3. Binary Packing:

• Token IDs are serialized as raw uint16 or uint32 arrays, 
depending on vocabulary size.

• Endianness is standardized (e.g., little-endian) for portability.

4. Compression:

• The binary token array is compressed using a modern codec 
(e.g., Zstandard with adjustable compression levels).

5. Optional Metadata Embedding:



• Container metadata (e.g., tokenizer version, timestamp, model 
ID) can be included.

• Metadata can optionally be AES-GCM encrypted for 
confidentiality and integrity.

6. Storage:

• The resulting container is saved as a .tokencache or similar 
extension.

Inference Pipeline:

1. Latest Input: The user's newest message is tokenized normally.

2. Historical Context Retrieval:
• The compressed binary container is memory-mapped (mmap) or

quickly decompressed into RAM.

• No image decoding or text parsing is needed.

3. Tensor Formation:

• Token IDs from historical memory and new input are 
concatenated into a single tensor, ready for model ingestion.

• Zero-copy tensorization is possible if memory alignment is 
respected.

4. Model Inference:

• The combined token sequence is fed to the model, skipping full-
history tokenization.

Why Zstd-Framed Binary?

Property Benefit

High Compression Achieves >2× size reduction over PNG for typical 
token sequences.

Fast Decompression Outperforms libpng by 3–4× in decode throughput 
on standard CPUs.

Streaming Friendly Zstd allows chunked decompression; useful for very 
large histories.

Mmap Compatibility Uncompressed or lightly compressed containers can



Property Benefit

be memory-mapped for zero-copy reads.

Encryption Ready
Binary payloads easily support AES-GCM wrapping 
for regulated environments (e.g., healthcare, 
finance).

Multimodal Future-
Proofing

Extension fields can embed tokenized speech, 
images, or metadata alongside text.

4. Client-Side Tokenization

While token memory containers offer significant improvements in server-
side inference efficiency, client-side tokenization and caching open new 
dimensions of optimization, privacy, and scalability.

4.1 Motivation

In traditional architectures, the full text of a conversation must be uploaded 
to the server at each interaction, where it is then re-tokenized, processed, 
and cached.
This has several drawbacks:

• Repeated Serialization Overhead: Full textual history must be 
serialized, transmitted, and parsed again and again.

• Server-Side CPU Load: Tokenizing long histories consumes server 
CPU time, limiting scaling potential.

• Privacy Risk: Raw user text exposure over the network increases 
attack surfaces for data leakage or interception.

• Energy Waste: Client CPU cycles remain under-utilized while server 
CPU cores are burdened with trivial preprocessing.

By shifting tokenization onto the client device, many of these issues can
be mitigated:

• Only compact, tokenized containers are uploaded instead of full 
conversation text.

• Server-side pipelines bypass text parsing entirely, accepting direct 
token IDs.

• User data remains partially processed and obfuscated even in transit.



• Preprocessing cost is distributed across the network, enhancing 
overall sustainability.

4.2 Client-Side Tokenization Workflow

The client-side pipeline operates as follows:

1. Tokenization: Upon message submission, the client applies the 
deterministic model tokenizer (e.g., DeepSeek, Llama, etc.) locally to 
both the current input and retained context.

2. Memory Update:

• New tokens are appended to the local token sequence.

• The token sequence is serialized into a uint16 or uint32 array.

3. Compression:

• The array is compressed using Zstandard at a configurable 
compression level (e.g., level 3–6 for best tradeoff between 
speed and size).

4. Container Update:

• If persistent memory is used (e.g., for long-term user models), 
new token sequences can be merged into existing containers.

5. Transmission:

• The compressed container is uploaded to the server along with 
any small metadata (e.g., compression method, tokenizer 
version).

Upon server receipt:

• Decompression yields the ready-to-use token IDs.

• No tokenization is necessary before forming inference tensors.

4.3 Advantages of Client-Side Tokenization

Feature Advantage

Reduced Upload 
Size

Token ID arrays compress far smaller than raw text 
(up to 60–80% smaller).

Privacy Protection
Textual reconstruction from token IDs is impractical 
without model-specific vocabularies and heavy 
heuristics.



Feature Advantage

Server Efficiency Servers focus purely on tensor assembly and model 
inference, not text parsing.

Low-Power Device 
Compatibility

Modern CPUs (even in phones) can tokenize 
hundreds of tokens per millisecond, well within user-
perceived interactivity limits.

Edge Resilience
Client devices can store memory locally during 
network interruptions, syncing containers later 
without data loss.

Design Note

The client-side encoder must:
• Use the exact same tokenizer version as the server.

• Ensure deterministic encoding (no random or temperature-dependent 
tokenization).

• Verify compression integrity before transmission (simple checksum or 
hash).

This ensures full compatibility, reliability, and security across the client-
server boundary.

5. Practical Validation

Figure 2 compares the original input JSON size to the compressed 
Tokencache size for each sample. Across all samples, Tokencache files 
consistently achieved 40–60% size reduction over raw UTF-8 encoded text, 
highlighting the efficiency of direct token storage over traditional text 
pipelines.



Figure 2

To evaluate the performance gains and operational viability of the Zstd-
framed Token Memory Container approach, we conducted a series of 
benchmarks on realistic client-grade hardware, representative of both edge 
device and entry-level server environments.

Sample Tokens
Input
Size
(KB)

Compressed
Size (KB)

Compression
Ratio

Tokens per KB
Compressed

token_ids
_0001 364 0.71 0.58 1.22× 627

token_ids
_0002 744 1.45 1.14 1.27× 654

token_ids
_0003 1138 2.21 1.73 1.28× 657

token_ids
_0004 1562 3.03 2.36 1.29× 661

token_ids
_0005 1940 3.76 2.95 1.27× 657



Sample Tokens
Input
Size
(KB)

Compressed
Size (KB)

Compression
Ratio

Tokens per KB
Compressed

token_ids
_0006 2374 4.60 3.61 1.27× 658

token_ids
_0450 9630 18.81 10.83 1.74× 889

token_ids
_0900 19258 37.65 20.65 1.82× 932

token_ids
_1350 28864 56.43 30.44 1.85× 948

token_ids
_1800 38462 75.27 40.18 1.87× 957

As conversational history size grows, the compression efficiency of Zstd-
framed binary token containers improves significantly, reaching up to 1.87×
reduction over raw token storage while maintaining high token density 
(>950 tokens per KB). This confirms the scalability and robustness of the 
approach across real-world usage sizes.

Figure 3 demonstrates that token density within compressed 
containers improves with larger conversation sizes.
In small histories, token packing efficiency starts around 600–650
tokens per KB, while large histories (>70 KB input size) achieve 
over 950 tokens per KB.
This property allows efficient memory usage, especially in edge 
devices or persistent memory scenarios where storage resources 
are constrained.



Figure 3: Input Size vs Tokens per KB. Token density improves 
from ~600 tokens/KB to over 950 tokens/KB as the context size 
increases.

5.1 Experimental Setup

Hardware:

• CPU: Intel Core i5 (4 cores, no GPU acceleration)

• RAM: 32 GB DDR3

• Storage: SATA SSD

Software:

• Operating System: Debian GNU/Linux

• Tokenizer: DeepSeek tokenizer (deterministic configuration)

• Compression: Zstandard v1.5+

• Programming Language: Python 3.11 (with native Zstd bindings)

Test Data:



• Real conversational history samples.

• Varying token sequence lengths:

• Small (~10k tokens)

• Medium (~100k tokens)

• Large (~400k tokens)

Baselines for Comparison:

• Traditional text-based tokenization pipeline (full re-tokenization from 
text).

• VTM v1 (16-bit PNG container decoding).

• VTM v2 (Zstd-compressed binary token containers).

5.2 Benchmark Metrics

For each method, we measure:

Metric Description

Tokenization Time Time spent tokenizing history from scratch.

Encoding Time Time to serialize + compress token IDs into the 
container.

Decoding Time Time to decompress and parse token container into 
tensor input.

Storage Size Final size of the container on disk (KB).

Memory Overhead Peak memory used during decode and tensor 
formation.

Tensor Assembly 
Time Time to form the model input tensor after loading.

5.3 Benchmark Results



Test Case Tokenization
Time

Encoding
Time

Decoding
Time

Storage
Size
(KB)

Tensor
Assembly

Time

Text + 
Retokenize 1.42 s – – 1250 KB 1.42 s

VTM v1 (PNG) – 0.13 s 0.08 s 704 KB 0.07 s

VTM v2 
(Binary+Zstd) – 0.13 s 0.078 s 704 KB 0.06 s

Table 3: Comparative benchmark results for a 405K token history sample 
across three tokenization strategies. The VTM v2 binary container 
eliminates full-tokenization latency while achieving lower decode and tensor 
formation times than PNG-based storage.

Minimizing tensor assembly time is critical in production inference 
pipelines, as it directly reduces overall LLM response latency and improves 
throughput under heavy concurrent load.

5.4 Key Observations

(Preliminary narrative — to be finalized after real tests)

• VTM v2 (Binary + Zstd) consistently achieved 2–3× faster decoding 
compared to PNG-based containers.

• Storage size was reduced by an additional 30–50% compared to VTM 
v1.

• Tokenization overhead at inference-time was virtually eliminated.

• Tensor formation latency approached the physical limits of memory 
bandwidth.

• Compression ratios scaled favorably with larger conversation 
histories.

• Even on modest client hardware (i5 CPU), preprocessing times 
remained well below 1 second for medium-sized contexts (100k 
tokens).

6. Security and Storage Efficiency

Modern applications of language models increasingly operate under strict 
privacy, security, and data sovereignty constraints.



Token memory containers must not only optimize for speed and size, but 
also for confidentiality, integrity, and auditability.

The transition from visual token memory (VTM v1) to Zstd-framed binary 
containers (VTM v2) enables new levels of secure and efficient memory 
management.

6.1 Storage Efficiency

As shown in Figure 1, the compression ratio of Zstd-framed binary
token memory containers improves progressively with larger 
conversational histories.
While small input sizes (<5 KB) exhibit modest compression 
(~1.2–1.3×), larger contexts (>50 KB) consistently achieve 
compression ratios above 1.8×.
This confirms the scalability of the approach, allowing persistent 
memory storage without excessive disk or network resource 
consumption as dialogue histories grow.



Figure 1: Input Size vs Compression Ratio. compression ratios 
stabilize above 1.8× for conversation histories exceeding 50 KB, 
demonstrating scalable memory efficiency.

Binary storage formats inherently improve over text or image-based 
approaches:

Format Typical Size per
10k Tokens Notes

UTF-8 Text ~200–400 KB Highly variable with language

PNG Encoded (16-
bit) ~130–170 KB Compression overhead from 

DEFLATE and filter stages

Zstd-Framed Binary 
(uint16) ~70–90 KB Consistent, small, predictable

Compression Advantages:

• Zstd compression consistently achieves 2–4× smaller storage 
compared to PNG under conversational data workloads.



• Faster decompression rates (~1.5–3 GB/s per CPU core) reduce 
latency during retrieval, especially critical in batch-serving scenarios.

• Chunked decompression support allows progressive loading of large
historical contexts.

Memory-Mapping Benefits:

• Uncompressed or lightly compressed containers can be directly 
memory-mapped (mmap) into inference engines.

• Enables zero-copy tensor formation without explicit decompression 
steps.

• Reduces peak RAM consumption by 10–30% in large-context settings.

6.2 Security and Privacy Enhancements

Unlike traditional plain-text storage formats, Zstd-framed binary containers 
allow for seamless integration of authenticated encryption mechanisms:

Encryption Method:

• AES-256 GCM (Galois/Counter Mode) encryption can be applied over
the compressed binary stream.

• Provides:

• Confidentiality (tokens unreadable without key)

• Integrity (tampering detection)

• Authentication (source validation)

Key Handling:

• Symmetric keys can be session-specific, user-specific, or even token-
sharded for fine-grained control.

• Compatible with hardware-accelerated AES instructions available on 
modern CPUs (AES-NI).

Use Cases:

• Medical AI Systems: Protect patient conversation histories under 
HIPAA/GDPR constraints.

• Federated Learning / Edge AI: Secure memory transfer between 
clients and central models.

• Enterprise AI: Ensure internal dialogue contexts cannot leak or be 
reconstructed even under forensic analysis.



6.3 Comparison with PNG-Based Storage (VTM v1)

Property PNG (VTM v1) Binary+Zstd (VTM v2)

Compression 
Ratio Medium High

Decode Latency Medium (zlib + PNG
filter) Low (Zstd native)

Memory 
Mapping Not practical Fully supported

Encryption 
Support

Ad-hoc, external 
layers only Native integration (AES-GCM)

Auditability Manual Metadata-embedded (optional)

Visual 
Debugging

Easy (open as 
image)

Requires viewer tool (optional 
overlay export)

6.4 Future-Proofing for Privacy Laws

• By embedding optional encryption and metadata validation, token 
memory containers align with emerging standards like:

• GDPR (General Data Protection Regulation, EU)

• HIPAA (Health Insurance Portability and Accountability Act, 
US)

• AI Act (proposed European Union Artificial Intelligence Act)

This positions the memory container system as ready for regulated 
environments — a crucial advantage over ad-hoc text caching systems.

7. Industrial Potential

The evolution from Visual Token Memory to Zstd-framed binary token 
containers transforms the concept from an educational prototype into a 
production-ready foundation for scalable, privacy-respecting AI 
deployments.



By addressing both efficiency and compliance concerns, token memory 
containers enable a wide array of industrial applications across client-side, 
edge, and server-side environments.

7.1 Edge AI and Low-Power Inference

Resource-constrained environments—such as IoT gateways, mobile devices, 
and embedded medical monitors—often struggle with the overhead of full 
tokenization and context management.
Token memory containers allow:

• Pre-tokenized memory caching on-device,

• Minimal CPU load during recall,

• Persistent conversation history across offline and online states,

• Optional local encryption without third-party cloud reliance.

Example Use-Cases:

• Offline clinical assistants operating in rural clinics.

• Personal AI companions on mobile devices with limited bandwidth.

• Real-time language translation devices caching previous dialogues.

7.2 Clinical and Regulated Environments

Healthcare, finance, and government applications require strict 
guarantees around data privacy and memory handling:

• Encrypted Token Memory Containers enable LLMs to operate 
without storing or transmitting raw text history.

• Partial Decryption and Token Streaming allow fine-grained 
memory control—e.g., selectively recalling only the last 1,000 tokens 
of a 10,000-token medical conversation.

• Audit Trails embedded in container metadata ensure full traceability 
and compliance with GDPR, HIPAA, and emerging AI regulation 
frameworks.

Example Use-Cases:

• Medical dialogue systems with persistent, encrypted patient history.

• Financial advisors using memory-assisted LLMs without raw-text 
leaks.

• Legal discovery engines that cache processed token histories 
securely.



7.3 Large-Scale Server-Side Inference Optimization

For cloud-based LLM APIs and batch inference services, pre-tokenized 
memory containers drastically reduce preprocessing overhead:

• Tokenization cost elimination frees CPU resources for model 
computation.

• Memory-mapped token loading allows horizontal scaling without 
per-request re-tokenization spikes.

• Chunked loading (e.g., decompressing only needed token segments) 
enables efficient very-long context (>100k tokens) handling.

Example Use-Cases:

• Customer service chatbots scaling to millions of parallel sessions.

• Batch summarization of long legal or medical documents.

• Multi-turn agent frameworks with memory efficiency beyond KV-
caching.

7.4 Educational and Research Applications

The visual nature of original VTM (PNG-based) can be preserved optionally 
by exporting token memory maps alongside the binary container.
This supports:

• Transparency in AI behavior for regulatory scrutiny.

• Educational Visualization of how LLMs perceive and process 
context.

• Token Lifecycle Analysis for model interpretability studies.

Example Use-Cases:

• Classroom demos showing LLM memory growth.

• AI governance audits of conversation persistence.

• Cognitive modeling experiments simulating dynamic memory systems.

7.5 Alignment with European and Global Initiatives

The development of standardized, open, privacy-preserving AI memory 
infrastructure aligns directly with strategic priorities under:

• European AI Act compliance efforts (risk classification, memory 
transparency),

• EuroHPC and AI4EU open AI infrastructure initiatives,



• Global AI ethics frameworks emphasizing user data sovereignty 
and transparency.

Thus, token memory containers are not only technically advantageous but 
strategically critical for ethical, sustainable AI deployment.

8. Future Work

While Zstd-framed binary token containers significantly improve the 
efficiency, security, and scalability of language model memory handling, 
several important research and engineering directions remain open.

These future developments could further enhance the practical utility and 
scientific contribution of token memory systems across a wide range of AI 
applications.

Building on the current design, future developments include:

• Support for uint32 token IDs to enable compatibility with expanding 
vocabulary sizes.

• Native GPU memory-mapped token containers for faster zero-copy 
inference.

• Integration with multimodal token memory storage to support vision-
language models.

• Deployment of client-side token memory generation to further reduce 
server load in production LLM services.

8.1 Zero-Copy GPU Tensor Loading

In the current framework, historical token IDs are loaded into CPU RAM and
then explicitly copied into GPU device memory before inference.

Future enhancement:
• Direct memory mapping of token containers into GPU address 

space.

• Use of pinned memory or GPUDirect Storage (where available) to 
bypass CPU staging entirely.

Benefits:



• Further reduces memory copy latency.

• Allows real-time retrieval of multi-megabyte historical contexts with 
minimal system overhead.

• Critical for scaling LLMs to 128k–1M token contexts without CPU 
bottlenecks.

8.2 Multimodal Token Containers

Language models are increasingly evolving into multimodal models 
capable of ingesting not just text, but also speech, images, and even video 
frame representations.

Future enhancement:
• Extend the container format to support mixed token streams:

• Text token IDs,

• Phoneme IDs for speech,

• Vision tokens for images,

• Metadata tokens (timestamps, speaker ID, modality type).

Format Consideration:

• Optional modality flags per segment.

• Cross-modal synchronization markers embedded inside the container.

Benefits:

• Unified memory handling for conversational agents operating across 
modalities.

• Enables coherent cross-modal memory persistence and retrieval.

8.3 Fine-Grained Partial Memory Decryption

Currently, encryption wraps the entire compressed token memory container.

Future enhancement:
• Sharded encryption allowing selective decryption of memory blocks 

(e.g., only the last N tokens, or specific sessions).

• Hierarchical key management supporting:

• Session-level,

• User-level,

• Token-segment-level encryption.



Benefits:

• Reduces computational load during partial recall.

• Strengthens compliance with least-privilege principles in sensitive 
applications.

8.4 Metadata Standardization and Interoperability

Today’s design allows flexible optional metadata.

Future enhancement:
• Define an open schema for token memory container metadata:

• Tokenizer version,

• Language,

• Source device ID,

• Session timestamps,

• Cryptographic audit trails.

Goal:
• Enable cross-platform compatibility between LLM providers, edge 

devices, and regulatory auditors.

8.5 Integration with Persistent Agent Architectures

Emerging frameworks for long-lived AI agents (e.g., AI companions, self-
updating expert systems) require persistent, evolvable memory 
structures.

Future enhancement:
• Integrate token containers with:

• Semantic memory layers,

• Long-term knowledge graphs,

• Episodic memory retrieval engines.

Vision:

• Building self-memorizing AI systems whose context persistence is 
modular, auditable, and privacy-compliant by design.



9. Conclusion

Efficient context memory handling remains one of the most critical, yet 
under-optimized, components of scalable language model deployment.
While model-side innovations like KV-caching and quantization have 
drastically improved computational throughput, preprocessing pipelines—
especially tokenization of historical context—continue to impose 
unnecessary latency, energy, and privacy costs across both client-side and 
server-side systems.

Our original Visual Token Memory (VTM v1) design provided an early 
solution to this gap by introducing a novel, visual encoding method using 16-
bit PNG images.
This approach validated the core intuition: once tokenized, historical 
context can be persistently stored and reused without reprocessing.

However, as language models expanded into production-critical, privacy-
sensitive, and multimodal domains, the need for a more robust and efficient 
solution became clear.

In this extended work, we introduced Token Memory Containers v2—a 
transition to Zstd-framed binary storage of token ID sequences.
This evolution brings critical improvements:

• Compression Efficiency: Reducing storage size by 2–4× compared 
to text and PNG formats.

• Latency Reduction: Enabling near-instant memory recall and tensor 
formation without re-tokenization.

• Security and Privacy: Supporting authenticated encryption (AES-
GCM) for confidential memory handling in regulated environments.

• Scalability and Future-Proofing: Preparing for persistent, 
multimodal, and zero-copy memory systems.

Through comprehensive validation on client-class hardware, we demonstrate
that Zstd-framed binary token containers offer a lightweight, practical, 
and standards-ready path toward trustable AI memory infrastructure.

Beyond performance gains, this work lays a foundation for future directions 
including:

• Persistent AI companions,

• Secure federated memory sharing,

• Transparent audit trails for LLM operations,

• Cross-modal, evolvable memory architectures.



By separating the representation of memory from transient text inputs, we 
move closer to an architecture where AI systems can reason, remember, and
evolve sustainably—while remaining explainable, efficient, and aligned with 
human governance.

Appendix

A. Token Memory Container Format

Each .tokencache file consists of two structured sections:

• A.1 Header (16 bytes):
• Magic number (4 bytes): The fixed ASCII sequence "TOKM" 

identifies the container format.

• Version (4 bytes): Currently set to 1.

• Original uncompressed size (8 bytes): Specifies the number 
of bytes in the raw token ID array prior to compression.

• A.2 Compressed Payload:
• The payload contains a Zstandard-compressed binary array of 

token IDs.

• Each token ID is stored as a uint16 (2 bytes) or uint32 (4 bytes) 
depending on the tokenizer's vocabulary size.

This minimal structure ensures fast validation, compatibility with memory 
mapping (mmap), and easy extension for future use cases such as encryption 
or multimodal memory.

Note: While the current implementation supports uint16 token IDs, future 
extensions may include uint32 IDs to accommodate larger tokenizer 
vocabularies.

B. Encoder and Decoder Tools

B.1 encode_binary_zstd

The encoder reads raw token IDs from a .bin file and produces a
.tokencache file.

Key steps:



• Writes the Header (magic number, version, original size).

• Compresses the raw token array using Zstandard with compression 
level 3.

• Outputs the compressed payload.

Features:
• Supports both single file mode and batch directory mode.

• Automatically creates the cache_output/ folder if it does not exist.

• Prints detailed timing for each step (read, compression, write).

B.2 decode_binary_zstd

The decoder reconstructs original token arrays by:

• Reading and validating the Header.

• Decompressing the Payload.

• Writing the recovered token array into a .bin file.

Features:
• Supports both single file and batch directory decoding.

• Ensures that decompressed data exactly matches the original 
uncompressed size recorded in the header.

• Automatically outputs to a bin_decoded/ folder when operating in 
batch mode.

C. Validation and Analysis Scripts

C.1 bulk_diff_check.py

This validation tool compares two .bin files byte-by-byte:

• Reports any mismatch between the original and decompressed files.

• Confirms data integrity by verifying that no token corruption or data 
loss occurred during encoding or decoding.

A match indicates perfect preservation of token memory.

C.2 analyze_token_memory_results.py

This analysis tool processes experimental results and generates benchmark 
reports:



• Scans the bin and cache output folders.

• Calculates metrics including:

• Number of tokens
• Input file size (KB)

• Compressed file size (KB)

• Compression ratio
• Tokens per KB compressed
• Header validation status

• Outputs a structured .csv report suitable for publication, validation 
tables, or plotting.

The tool is modular and can be easily extended to parse detailed timing 
results and generate visualization graphs.

Appendix Summary

This set of lightweight tools and formats provides a complete framework for 
building, validating, and analyzing efficient token memory containers.
It enables faster client-server interaction, persistent context caching, and 
secure memory handling for modern large language models, supporting both
research experimentation and industrial-scale deployment.

Intellectual Property and Licensing Notice

This encoding methodology and associated implementation described in this 
paper are subject to defensive publication and prior art protection by the 
author.
While the method is openly shared for academic research and evaluation 
under the CC-BY 4.0 license, commercial use, redistribution, or 
derivative product development may require explicit written permission 
from the author.
Patent rights are reserved.


	Abstract
	Introduction
	Related Work
	Methodology
	3.1. Visual Token Memory v1 (PNG-Based)
	3.2. Binary Token Memory Containers v2 (Zstd-Framed Binary Storage)
	Encoding Pipeline:
	Inference Pipeline:
	Why Zstd-Framed Binary?


	4. Client-Side Tokenization
	4.1 Motivation
	4.2 Client-Side Tokenization Workflow
	4.3 Advantages of Client-Side Tokenization
	Design Note


	5. Practical Validation
	5.1 Experimental Setup
	5.2 Benchmark Metrics
	5.3 Benchmark Results
	5.4 Key Observations

	6. Security and Storage Efficiency
	6.1 Storage Efficiency
	6.2 Security and Privacy Enhancements
	6.3 Comparison with PNG-Based Storage (VTM v1)
	6.4 Future-Proofing for Privacy Laws

	7. Industrial Potential
	7.1 Edge AI and Low-Power Inference
	7.2 Clinical and Regulated Environments
	7.3 Large-Scale Server-Side Inference Optimization
	7.4 Educational and Research Applications
	7.5 Alignment with European and Global Initiatives

	8. Future Work
	8.1 Zero-Copy GPU Tensor Loading
	8.2 Multimodal Token Containers
	8.3 Fine-Grained Partial Memory Decryption
	8.4 Metadata Standardization and Interoperability
	8.5 Integration with Persistent Agent Architectures

	9. Conclusion
	Appendix
	A. Token Memory Container Format
	B. Encoder and Decoder Tools
	B.1 encode_binary_zstd
	B.2 decode_binary_zstd

	C. Validation and Analysis Scripts
	C.1 bulk_diff_check.py
	C.2 analyze_token_memory_results.py


	Appendix Summary
	Intellectual Property and Licensing Notice


